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Abstract

Ž .Quality function deployment QFD has helped many firms realize significant reduction in product design costs and
development time. The QFD process includes ranking customer preferences, rating the competitors, and parts deployment
for the newrimproved product. Prior to this research, such activities have been performed based on expert opinion, or the
‘‘best-in-class’’ approach. We develop and solve optimization models for the identification of consensus rankings and
ratings, that take into account the priorities and perceptions of all the customers in a target market. Then, based on the
consensus rankings, we identify a parts mix for the newrimproved product that satisfies a budget constraint and matches or
exceeds the performance expectations of all customers surveyed in the target market. Finally, we show how the QFD charts
can be used to identify competitors that are falsely perceived as superior, as well as areas where the firm’s marketing
strategies have had the desired effects. Such insights are useful in developing the future marketing strategy of the firm.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction and literature review

QFD originated in 1972 at Mitsubishi’s Kobe
shipyard site. Toyota began to develop the concept
shortly thereafter, and has used it since 1977 with
impressive results. Xerox and Ford initiated the use
of QFD in the United States in 1986. Today, QFD is
used successfully by manufacturers of electronics,
appliances, clothing, and construction equipment, by
firms like General Motors, Ford, Mazda, Motorola,
Xerox, Kodak, IBM, Procter and Gamble, Hewlett-

Ž .Packard, and AT&T see Jebb et al., 1992 . Two
Ž .organizations, the American Supplier Institute ASI ,

a nonprofit organization, and GOALrQPC, a Mas-
sachusetts consulting firm, have publicized and de-

veloped the concept in the United States. The ASI
uses a basic four-matrix method developed by
Macabe, a Japanese reliability engineer. GOALrQPC
advocates a multiple matrix method developed by
Akao and incorporates many disciplines in a less
structured format consisting of a matrix of matrices.
Akao, 1990 has collected into a book the multiple
matrix applications from many Japanese practitioners
Ž .see also Day, 1993 .

We should make clear that QFD is concerned
mostly with the proccess of improving an existing
product so that it captures customer expectations. In
this sense, QFD is concerned with the development
of products that are ‘‘best-in-class’’, i.e., they are
superior to any known existing product in a particu-
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lar and well established market segment. This philos-
ophy contrasts the concept of breakthrough product
deÕelopment which is primarily concerned with
‘‘first-in-class’’ products, i.e., superior products that
define new market segments and have no precedence
in the market. Due to the large amounts of informa-
tion required, QFD is not amenable to breakthrough
product development simply because the required
data are mostly unavailable. Having done this impor-
tant distinction, QFD has been used by many firms
to introduce dramatically improved products. Xerox
has used QFD to develop the latest generation of
office equipment. Canon used QFD to develop the
last generation of cameras that support intelligent
microchips for autofocus, focus based on eye move-
ment, red eye reduction, etc. Ford used QFD in the
1980s to develop the concept of ‘‘best-in-class’’.
The outcome of this concept was the Taurus model
that dominated the car market for mid-sized cars for
over a decade. Subsequently, the Ford Sable model
was also developed using QFD. For more applica-
tions of QFD on breakthrough technologies refer to

Ž .Akao 1990 .
Due to its exposure, QFD is gaining broad accep-

tance as a design methodology for the design and
Žmanufacturing stages Kupparaju et al., 1985; Sulli-

.van, 1986; Hauser and Clausing, 1988 of newrim-
proved products. Value measurement techniques are
presented in Shillito and DeMarle, 1992. They are
used to plot the relative importance and relative cost
of items. Once plotted each graph can be used to
locate areas for cost reduction and importance im-
provement. Case-based reasoning methods for QFD
have been proposed by Araya and Ibrahim, 1994,
and Lee and Lai, 1991. Case-based operations allow
for the identification of relevant cases or aspects of
cases to obtain a new case from which to initiate a

Ždesign using artificial intelligence Riesbeck and
.Schank, 1989; Slade, 1991; Kolodner, 1993 . Varia-

tions of the QFD process are presented in Shillito,
1994. In Chap. 4 of that book the author presents a
methodology called customer-oriented product con-
cepting. In Chap. 5 of the same book the QFD
process is extended to relate business plans to the
corporate mission. This extended QFD framework is
termed PQFD for Planning QFD.

To the best of our knowledge not much research
is done on quantitative models for QFD. The pro-

posed methodologies use mathematical programming
to evaluate customer preferences, identify perceptual
gaps, and select parts while adhering to budget con-
straints. A brief summary of the QFD methodology
follows.

Four sets of matrices are used to relate the voice
of the customer to a product’s technical require-
ments, component requirements, manufacturing op-
erations, and quality control plans. The tabulation of
the data needed by each of the four matrices, utilizes

Ža matrix format called house of quality HOQ; see
.Fig. 1 . The first HOQ matrix is the customer re-

quirements planning matrix; see Evans and Lindsay,
1996. Building the first HOQ consists of 6 basic
steps:

1. Identify customer requirements.
2. Identify technical requirements.
3. Relate the customer requirements to the techni-

cal requirements.
4. Conduct an evaluation of competing products.
5. Evaluate technical requirements and develop

targets.
6. Determine which technical requirements to de-

ploy.
Based on the findings of the first HOQ matrix, the

design process continues with the three matrices
indicated in Fig. 1.

The second HOQ matrix helps to identify parts
and subsystems to be deployed, the third identifies
specific processes to be used during the manufactur-
ing stage, and the last HOQ matrix builds specific
quality controls into the manufacturing process.

This research concentrates on optimization tools
that facilitate the first two stages of the QFD process.
More specifically, we develop tools for the ordering
of customer preferences, rating of the competitors,
and parts selection. The current literature on the first
two stages of the QFD process focuses on an all-in-
clusive tabulation of the data regarding a newrim-
proved product that accounts for customer desires
and engineering concerns, without suggesting an ob-
jective way to manipulate this data.

Important decisions such as customer rankings,
competitor ratings, and parts selection are currently
made mostly based on expert opinion. Or, such
decisions are based on the ‘‘best-in-class’’ competi-
tor. In the former case, decisions regarding the
newrimproved product may be myopic since they
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Fig. 1. The 4 stages of the QFD proccess.

account for only a small group of experts. In the
latter, the decisions made attempt to improve current
product offerings without accounting explicitly for
actual customer expectations. Hence, such decisions
are by design imitative, rather than innovative.
Moreover, choosing the best features among existing
products may result in excessive costs and does not
guarantee meeting customer expectations.

Existing literature assumes that customer rankings
and competitor ratings are readily available. It is
generally true, however, that customers within the
same target market have different preference priori-
ties. We provide optimization models that use the
data collected through customer surveys to compute
consensus preferences for the customers and consen-
sus ratings for the competitors. Based on the consen-
sus rankings and ratings, we develop optimization
models that identify the product parts and features
that optimize the performance of the newrimproved
product, while satisfying the firm’s budget limita-
tions.

Evidently, in this article, we assume that the
customer preferences as well as the product’s engi-
neering characteristics are known in advance. This
usually involves interpreting customer information
and product features and measures with the use of a

Ž .set of seven quality control QC tools developed in

Japan by the society of QC Techniques Development
Ž .see Guinta and Praisler, 1992 . These tools are
structural techniques used to analyze and structure
qualitative data. Examples of such tools include
affinity, tree, and matrix diagrams. The QFD analy-
sis considered in this paper cannot be done without
prior use of the above mentioned tools to design the
QFD matrices. In this sense, the great advantage
Ž .and at the same time limitation of QFD analysis is
the ability to rationalize the use of large amounts of
customer and engineering information regarding the
product. On the other hand, if the product develop-

Žment team cannot acquire sufficient data even
.through estimation , then QFD analysis cannot pro-

ceed. For this reason, QFD is of limited use for very
new products.

Except for the availability of customer prefer-
ences and the product’s engineering characteristics,
in this article, we assume that the necessary studies
have been performed to identify the target market as
well as the existing competitors in this market. Using
these data, in this paper, we present a methodology
for identifying the competitors that enjoy the greatest
perceptual benefits, i.e., competitors whose market-
ing strategies have led the customers to believe that

Ž .their products or particular characteristics thereof
are superior even though the actual performance of
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these products does not justify this belief. From a
marketing viewpoint, such competitors are important
because they can serve either as benchmarks of
marketing performance, andror as a source of proven
winning marketing strategies.

The rest of this article is organized as follows. In
Section 2, we present the main assumptions of this
research, and introduce some notation. We also pre-
sent an integer programming model for the identifi-
cation of a parts mix for the newrimproved product.
In Section 3, we present optimization models for the
identification of a single ‘‘consensus’’ ranking of
customer preferences for the product. Also, we dis-
cuss current practices on this issue. In Section 4, we
show how the information stored in the HOQ charts
can be used to identify perceptual gaps, i.e., cases
where one competitor is falsely perceived to perform
better than another. In Section 5, we provide a
comprehensive example using the models developed
in the article. We conclude in Section 6. All proofs
are included in Appendix A.

2. Assumptions, notation and basic results

For the models presented in this article we make
the following assumptions.
Ž .i A target market has been identified
Ž .ii The competitors competing in the same target
market have also been identified
Ž .iii Product design is limited to the base model;
not the possible options that may become avail-
able to attract secondary markets
Ž .iv Customer surveys have been elicited to collect
the customer related input data required by our
models.

ŽSeveral marketing techniques such as conjoint
.analysis are available for market segmentation. In

this article, we assume that such studies have been
employed, and that a target market has been identi-
fied, as well as existing competitors for this market.
Within a well defined target market, however, the
expectations of prospective customers are different
due to the environment in which the product is going
to be used. For instance, a portable compact disk
player may be used outdoors, or in the car. In each
of these two cases, the expectations regarding the
sensitivity and durability of the laser beam of the

disk player are different. Still, the firm has to deter-
mine the characteristics of the laser beam that can
satisfy all prospective customers in the target market.
As a result, we assume that all customer surveys
used to collect the input data required in our analy-
ses, have been administered to customers of our
target market only. In many cases, a product is
accompanied with a variety of options that are de-
signed to capture secondary markets. This research
does not address the problem of determining optional
offerings. It only focuses on the base model that can
best capture a well defined target market.

Below, we summarize the notation used in the
rest of the paper. These pieces of notation are also
depicted in Table 1 in the HOQ1 and HOQ2 charts.
For the HOQ1 chart we use the following notation.

n: number of customer requirements
req : the ith customer requirementi

r : the customer’s preference rating of reqi i

m: number of engineering characteristics
e : the jth engineering characteristic of the prod-j

uct
a : the intensity with which e affects req , 1F ii j j i

Fn, 1F jFm
u : the weight with which e affects product per-j j

formance

Table 1
The HOQ1 and HOQ2 charts

HOQ1 chart

e e PPP e PPP e1 2 j m

req a r1 1 j 1

req a r2 2 j 2. . . . .. . . . .. . . . .
req a ri i j i. . . . .. . . . .. . . . .
req a rn n j n

u u PPP u PPP u1 2 j m

HOQ2

p p PPP p PPP p1 2 k n0

e b u1 1 k 1

e b u2 2 k 2. . . . .. . . . .. . . . .
e b uj jk j. . . . .. . . . .. . . . .
e b um m k m

w w PPP w PPP w1 2 k n0
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The intensities a are determined by the producti j

design team that draws heavily from the understand-
ing of the marketing group on customer expectations.
These expectations are determined through a number

Žof marketing tools including surveys by phone, mail
. Žor comment cards , interviews group, individual, or

.by phone , focus groups, commercially prepared
stock reports, panels, conjoint analysis, etc. The a ’si j

indicate importance and strength of qualitative rela-
tionships between customer requirements and engi-
neering characteristics, and assist in making dialogue
among design team members more convergent. We
assume that a G0, with a s0 indicating negligi-i j i j

ble or no relationship between req and e .i j

Ideally, the weights u should be induced by thej

customer ratings r and the intensities a . For thisi i j

reason, throughout this paper we assume that

n

u s r a js1,2, . . . ,m.Ýj i i j
is1

Alternatively, we could use the percentage weights
Ž . Ž .u s Ý r a r Ý Ý r a . In our experience withj i i i j j i i i j

QFD practitioners, there is no universal way of
determining the u ’s. In fact, in the majority of casesj

they are determined arbitrarily by the design team,
thus altering the intended effect of customer ratings.
The additional notation used in the HOQ2 chart is as
follows.

n : number of parts in the product0

p : the k th part of the productk

n : number of alternative choices for part pk k

p : the l th alternative part choice for pk l k

c : the cost of pk l k l
Ž . ŽPP c : the performance rating of p that costsk k l k l
.ck l

b : the intensity with which p affects ejk k j

w : the weight with which p affects productk k

performance
W: the total available budget for the parts and
components of the newrimproved product.
The parts p that go into a product are determinedk

by the engineering group so as to address the prod-
uct’s engineering characteristics. After knowing what
parts should be used, one has to determine a parts
mix. For every p , we assume that p , p , . . . , pk k1 k 2 k ,nk

are the available options at costs c ,c , . . . ,ck1 k 2 k ,nk

respectively. Precisely one of these options has to be

selected for building the product. These options cor-
respond to different levels or grades for the part. For
instance, tire rims could be selected among a variety
of metal alloys. The base lens used in a camera could
be selected among various millimeter options. The
length of a lawn mower blade could be selected
among different specified values. The amount of
limestone in a tile may be selected among different
levels of content percentage.

Ž .To each part option p that costs c , we assignk l k l

a numerical value that indicates how well it performs
in comparison to the alternatives. This numerical

Ž .value is denoted by PP c and is chosen from ak k l
w x Ž .scale 0,U e.g., 0 to 5 . In our experience, manu-

facturing and engineering group members with
knowledge on the characteristics of each part option,
in the majority of cases can easily assign such a
numerical attribute to each option. Consider, for
instance, the tire rim to be used in a car. The design
team has a choice among 3 different metal alloys,
each of which has known performance and cost. It is
easy for the design team to grade the performance of
the 3 alternatives in a scale from 0 to 5. In general,

Ž Ž ..for each ks1,2, . . . ,n , the pairs c , PP c for0 k l k k l

ls1,2, . . . ,n determine the performance functionk

PP . We assume that the functions PP , PP , . . . , PP ,k 1 2 n0

are known discrete strictly increasing nonnegative
functions of cost that take on values in a common

w xrange 0,U , i.e.,

w x w xPP : 0,` ™ 0,U , for ks1,2, . . . ,n .k 0

w xThe domain 0,` of the functions PP captures allk

possible cost values that a particular part or product
component may cost. The rationale for using a com-
mon range for all performance functions PP followsk

the description of the w weights below. The as-k

sumption that every PP is strictly increasing stipu-k

lates that a part option p is considered for inclu-k l

sion into the product, if and only if all less costly
X Ž X .options p i.e., c -c are attributed inferiork l k l k l

Ž Ž X . Ž ..performance i.e., PP c FPP c .k k l k k l

In the same spirit as for the u weights of HOQ1,j

the weights w should incorporate how significant isk

the effect of each e on product performance, as wellj

as the intensities b . Hence, in this paper we usejk

m

w s u b ks1,2, . . . ,n ,Ýk j jk 0
js1
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Žor alternatively the percentage weights w s Ý u -k j j
. Ž .b r Ý Ý u b . Again, in practice the w weightsjk k j j jk k

are often determined arbitrarily. Now, consider an
arbitrary parts mix p , p , . . . , p with corre-1 l 2 l n , l2 1 0 n0
sponding costs c ,c , . . . ,c . Then the perfor-1 l 2 l n , l1 2 0 n0
mance of this mix is given by

n n0 0

w PP c , and its cost is c .Ž .Ý Ýk k l k l k lk k k
ks1 ks1

It now becomes evident that the role of the wk

weights in the performance of a parts mix can be
distorted by using a different scale for each perfor-
mance function PP . For this reason, we use thek l

w xcommon range 0,U for all PP ’s. However, ank
w x Ž .arbitrary scale a,b aG0 can be used. Our choice

w x0,U is made for simplicity, and all subsequent
w xanalyses hold for the scale a,b .

The comments made earlier on the significance of
the a values extend to b . Similarly, b G0.i j jk jk

Finally, a comment on the cost values W and c . Wk l

is the target per unit materials cost that makes the
product economically viable. Usually, a great deal of
input about W is provided by the finance group
members. Note that the design team may have to
experiment with various W values prior to choosing
a product design. Iterative use of the models pre-
sented in this article allow for such experimentation.
The cost W of the final design does not have to be
the same as the corresponding cost of the products
that compete in the same target market. W is merely
the materials cost per unit of the offering with which
the firm has decided to compete in the target market.
For instance, if the firm is the ‘‘high end’’ provider

Ž .in the target market, then W will in most cases be
higher than the corresponding costs of competitors.
In the rest of this paper we assume that a single
budget constraint W is given. Our models do not
capture the impact of different unit cost levels on
product performance.

Finally, the costs c are primarily provided byk l

accounting team members with experience in pro-
curement of materials.

With the above stipulations, the following model
Ž .identifies a parts mix if one exists that maximizes

product performance without exceeding the budget

W for the materials. For 1FkFn and 1F l Fn ,0 k k

consider the binary variables

1 iff p is selected among the alternatives for pk l kkx sk l ½k 0 otherwise,

and the model
n n0 k

P max w PP c x 1Ž . Ž . Ž .Ý Ý k k k l k l
ks1 ls1

nk

s.t. x s1 ks1,2, . . . ,n 2Ž .Ý k l 0
ls1

n n0 k

c x FW 3Ž .Ý Ý k l k l
ks1 ls1

� 4x g 0,1 1FkFn , 1F l Fn . 4Ž .k l 0 k kk

Ž .The set 2 of constraints corresponds to the
assignment of part options in the parts mix, con-

Ž . Ž .straint 3 is the budget constraint, and Eq. 4
corresponds to the integrality constraints. In our

Ž .experience with QFD practitioners, model P is
widely acceptable, regardless of the way the various
input parameters are calculated.

Ž .The input parameters in P include W, the perfor-
Ž .mance functions PP c , and the w ’s. The formerk k l k

two are decided by the design team based on knowl-
edge of the technologies involved with the product
and the associated costs. The w ’s are outside thek

control of the design team and incorporate the voice
of the customer through the ratings r , which in turni

are used for the calculation of the u ’s which are thej

engineering weights involved in the calculation of
the w ’s. Evidently, the r values used for the calcu-k i

lation of the w ’s determine to a great extent thek
™Ž .parts mix that solves P . In this model, rs

Ž .r ,r , . . . ,r is assumed to be the consensus ratings1 2 n

Õector that can satisfy various product users in the
target market.

™In reality, the identification of r is an exercise left
for the design team based on the responses of the
customers surveyed. In the next section we relax the

™assumption that r is known, and present models for
determining the consensus ratings vector.

3. Consensus rankings and parts mix

Preferences among different customers vary for
any particular product, due to personal taste and
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individual use. As a result, if a pool of customers
that belong to the same target market is asked to
prioritize its requirements for an existing or prospec-
tive product, it submits different or even conflicting
priorities. In this case, it is appropriate to identify a
consensus prioritization of preferences so that the
resulting product captures the requirements of all
customers in the target market to a satisfactory level.
In Section 3.1 we present two approaches for finding
consensus rankings, and subsequently consensus parts
mix. In Section 3.2 we model the approach most
often used in practice today, and discuss its differ-
ences with the proposed ones.

3.1. Consensus preference rankings and parts mix

To formulate the consensus rankings problem, we
assume that a number of customers from the target
market are surveyed, and that their individual prefer-
ence rankings are available. The collection of these
data is mainly done by the marketing group. We
introduce the following notation.

s : number of customers surveyed0
™ n� 4r s r : the preference rankings of the sths i s is1

customer
w sÝm u b : the weight attributed to p byk s js1 js jk k

the preference rankings of the sth customer, where
u sÝn r ajs is1 i s i j
Ž .P : the integer program that results by replacings

™n n� 4 Ž . � 4r in P , by r s ri is1 s i s is1
Ž .Z : the optimal objective value of P .s s

™Evidently, for every customer, the vector r ss
� 4n Ž .r induces a model P that determines ani s is1 s

optimal parts mix for the preferences of the sth
Žcustomer. The performance of this parts mix using

™.the weights w induced by r is Z . Without lossk s s s

of generality, we assume that
n

r sS for every 1FsFs ,Ý i s 0
is1

™otherwise we can normalize the vectors r to satisfys
™this property. Given that the preference ratings r ofs

the customers may differ significantly, the parts mix
Ž .resulting from the P models for ss1,2, . . . ,ss 0

may also be very different.
To resolve the problem of which parts mix to use,

we turn our attention to finding a consensus ranking

™ n s� 4rs r . Towards this end, let c , ks1,2, . . . ,n ,i is1 k 0

be the costs of the parts of the optimal parts mix
Ž .determined by P . Then, consider the models

n m n0

sLP max r min r a b PP c yZŽ . Ž .Ý Ý Ýi s i i j jk k k s
ks1 js1 is1

5Ž .
n

s.t. r sS 6Ž .Ý i
is1

L Fr FU 1F iFn 7Ž .i i i

w xwhere L ,U is the scale utilized by the customersi i

to rank their priorities. A reasonable choice for this
w xrange could be min r , max r . The constraints i s s i s

Ýn r sS ensures that the consensus rankingsis1 i

vector will be normalized in the same manner as the
™ Ž .vectors r . Note that LP is equivalent tos

max Z
n m n0

ss.t. r a b PP c G Zq Z ; 1F sF sŽ .Ý Ý Ý i i j jk k k s 0
ks1 js1 is1

n

r sSÝ i
is1

L F r FU 1F iF ni i i

Ž .which is a linear programming problem. Thus, LP
identifies a consensus ranking that benchmarks

Žagainst the most demanding with respect to perfor-
. Žmance customer, say s i.e., a customer that attains

™U U U U. Ž .max Z . Let r s r ,r , . . . ,r be the consensuss s 1 2 m
™UŽ . Ž Ž ..rankings vector obtained by LP , and P r de-

Ž . � 4nnote the application of P when the rankings ri is1
™Uare replaced by r . Then, the above suggested ap-

proach utilizes the models

™UP : ss1,2, . . . ,s , LP, and P rŽ . Ž .Ž .s 0

in this sequence. The advantage of this approach is
Ž .that LP is easily solvable. The disadvantage is that

Ž .LP singles out a particular customer to use as
benchmark, and hence it is implicitly assumed that
the expectations of all other customers are uniformly
exceeded by the selected customer. This assumption
may not be true for customers that have significantly
different priorities in their product requirements. For
these cases we suggest the alternative model pre-
sented below.
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Consider the model
n nm n0 k

XŽ . Ž . Ž .P max r , x min r y r a b PP c xi k l 1F s F s i i s i j jk k l k lkÝÝÝ Ý0

ks1 js1 is1 ls1

Ž . Ž . Ž . Ž . Ž .s.t . 2 , 3 , 4 , 6 , 7 .

8Ž .
Ž X .Model P allows simultaneous identification of the

consensus rankings and the parts mix. Moreover, by
Ž X.using the rankings r , model P benchmarksi s

against the most demanding customer for each parts
Žmix over all possible mixes i.e., feasible assign-

.ments . Note that the most demanding customer,
changes with the parts mix. Another advantage of
this alternative approach is that it only involves

Ž X.solving P as opposed to the previous approach
that involves solving s q1 integer programs and0

one linear.

3.2. Current practice

In a survey administered by the American Quality
Ž .Foundation and Ernst and Young 1991 , only 22%

of US firms stated that they develop new products
and services based on customer expectations always
or almost always. The corresponding figures for
German and Japanese firms were 40% and 58%,
respectively. In the rest of this section, we present a
model for parts deployment that is most often used
for product design. According to this, a firm mini-
mizes the deviation of its parts mix performance
from the performance of the part mixes used by
competitor products. The actual performance of the
competitors’ part mixes is recorded in the tester
room of the expanded HOQ2 chart; also depicted in
Table 2. We first introduce the following notation.

Q: number of competitors considered by the de-
sign team
comp : the qth competitorq

b : the performance of the part p used byqk k

comp .q

Ideally, the b ’s are obtained from the perfor-qk
Ž .mance functions PP c for ks1,2, . . . ,n usingk k 0

reverse engineering. Namely, the engineering team
analyzes each competitor product into its building
blocksrparts. Assuming that the part p used byk

comp is one of the possible part options for ourq

newrimproved product, the function PP identifiesk

its performance b .qk

Table 2
The expanded HOQ2 chart

HOQ2

p p PPP p PPP p1 2 k n0

e b u1 1 k 1

e b u2 2 k 2. . . . .. . . . .. . . . .
e b uj jk j. . . . .. . . . .. . . . .
e b um m k m

w w PPP w PPP w1 2 k n0

comp b1 1 k

comp b2 2 k. . . .. . . .. . . .
comp bq qk. . . .. . . .. . . .
comp bQ Q k

Let
n m

u s a r , and w s u b ,Ý Ýj i j i k j jk
is1 js1

™where r is the consensus rankings vector determined
Žby the method of choice of the firm very often firms

use rankings that built consensus among design team
members rather than the customers. Consensus cus-
tomer rankings can be developed using the models of

.Section 3.1 . Then, the formulation
n n0 k

Ž .Ž .P max x min w PP c x y bŽ .Ý ÝC k l 1F q F Q k k k l k l qk
ks1 l s1

Ž . Ž . Ž .s.t. 2 , 3 , 4

9Ž .
identifies a parts mix with minimum performance
deviation from the parts mixes used by the competi-
tors. More specifically, if the quantity Ysmax

n0 nk Ž Ž . .min Ý Ý w PP c x yb is posi-1F q F Q ks1 ls1 k k k l k l qk
Ž .tive, then the model P identifies a parts mix withC

maximum possible performance. Else, Y-0 and
Ž .P identifies a mix that minimizes the performanceC

Ž .difference from any of the competitors. Note that 9
is equivalent to

n n0 k

max w PP c xŽ .Ý Ý k k k l k l
ks1 ls1

n0

ymax w b nÝ1F q F Q k qk k
ks1
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which is equivalent to benchmarking the parts mix
against that of the ‘‘best in class’’ competitor whose
weighted actual performance is max Ýn0 w1F q F Q ks1 k

yb n .qk k

The ‘‘best-in-class’’ approach, although insightful,
does not account for the performance expectations
Z of the customers; rather it strives for products thats

‘‘outperform’’ the products of the competitors. This
notion exemplifies current practice, where competi-
tion focuses more on beating a competing design
rather than closely matching or exceeding the expec-
tations of the customers in the target market.

4. Consensus ratings and perceptual gaps

The problems encountered when customers are
asked to rate various competitors in a target market
are similar to those presented in Section 3.1. Since
these ratings are heavily dependent on personal prod-
uct use, customer interactions with the producer,
word of mouth, exposure to marketing campaigns,
etc., it is expected that customer ratings vary widely.
To evaluate how each competitor is perceived, we
need to identify consensus ratings for each competi-
tor, based on rating surveys. We need the following

Ž .additional notation see also Table 3 .
sX : number of customers surveyed on competitor0

ratings
t s : the rating comp received on req by the sthi q q i

customer surveyed

™ n� 4t s t : the consensus ratings vector forq iq is1

compq

For consensus ratings we can use similar analysis
as for the case of consensus rankings. In this case
there is no justification in normalizing Ýn t ,is1 i q

because for instance a particular competitor may be
perceived to outperform all others with respect to
every single customer requirement. However, if
w xL ,U is the scale used to rate the perceived perfor-i i

mance of the competitors on req , it is required thati

L F t FU for every 1F iFn and 1FqFQ. Thei i q i

following linear program identifies the consensus
™ �rating of competitor comp ; namely t s t ,t ,q q 1q 2 q

4. . . ,t .nq

™

LP t min Z 10Ž .ž /ž /q

n
XU ss.t. yZF r t y t FZ ; 1FsFsŽ .Ý i i q iq 0

is1

L F t FU 1F iFni iq i

11Ž .
™ sŽ Ž ..Note that in LP t the ratings t are weighted byq iq

the corresponding consensus rankings rU. The result-i
™

ing vector t minimizes the maximum deviation ofq

the weighted ratings Ýn rU t s from Ýn rU tis1 i i q is1 i i q

over all customers. In the rest of this article we
™

assume that the consensus ratings t are alreadyq
™Ž Ž ..determined through the use of LP t , for everyq

qs1,2, . . . ,Q.

Table 3
The expanded HOQ1 chart

™e e PPP e PPP e r ) comp comp PPP comp PPP comp1 2 j m 1 2 q Q

Ureq a r t1 1 j 1 1 q
Ureq a r t2 2 j 2 2 q. . . . . . . .. . . . . . . .. . . . . . . .
Ureq a r ti i j i i q. . . . . . . .. . . . . . . .. . . . . . . .
Ureq a r tn n j n n q

U U U Uu u PPP u PPP u1 2 j m

comp a1 1 j

comp a2 2 j. . . .. . . .. . . .
comp aq q j. . . .. . . .. . . .
comp aQ Q j
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In Section 4.1 we show how the consensus com-
petitor ratings can be used to identify gaps in the
perceived performance of competitors. We do this by
developing graphs whose nodes represent competi-
tors, and arcs represent perceptual gaps between
competitors. After developing such graphs, the firm’s
marketing group can identify the competitors that
have been most successful in marketing the product,
or specific product features. Also, in the case where
the firm is already one of the competitors, the above
mentioned graphs indicate how the current marketing
strategy of the firm is perceived in the target market.
The managerial significance of these graphs is evi-
dent. A firm can reformulate its marketing strategy
by emulating or innovating upon proven competing
strategies, and can reinforce its own strategies that
have proved successful. Moreover, the firm is al-
lowed to take a micro look in the product by focus-
ing not only on the product as a whole, but also on
specific customer requirements as well as specific
engineering characteristics.

4.1. The networks of perceptual gaps

The HOQ1 chart starts by relating customer re-
quirements to the engineering characteristics e .j
These characteristics are chosen by the design team
and are measured through testing. As a result, the
lower part of Table 3 is known as tester room. Let,

a sactual performance rating of compq j q
with respect to e a G0 .Ž .j q j

The a ’s record the actual performance of eachq j

competitor comp with respect to e , as exhibitedq j

during product testing. In many cases, such test
results are available in product manuals in which
case testing is unnecessary. In the rest of this article
we assume that

n m
U U U Uu s a r , and w s u b ,Ý Ýj i j i k j jk

is1 js1

™Uwhere r is the consensus rankings vector deter-
mined by any of the methods suggested in Section
3.1. Consider two competitors comp and comp ,q q1 2

where 1Fq ,q FQ. In what follows we provide a1 2

definition for the perceptual gap g between theseq ,q1 2

two competitors.

Definition 1 If Ýn0 wU
b GÝn0 wU

b , thenks1 k q ,k ks1 k q ,k1 2

the perceptual gap g between comp andq ,q q1 2 1

comp isq2

n
Ug smax r t y t ,0 .Ž .Ýq ,q i i ,q i ,q1 2 2 1½ 5

is1

In the above definition, Ýn0 wU
b andks1 k q ,k1

Ýn0 wU
b correspond to the actual performanceks1 k q ,k2

of competitors comp , and comp , weighted by theq q1 2

weights uU that incorporate the consensus rankingsj

rU. The condition Ýn0 wU
b GÝn0 wU

b in-i ks1 k q ,k ks1 k q ,k1 2

dicates that the actual performance of competitor
comp is no worse than the performance of comp .q q1 2

The perceptual gap g is zero if comp is per-q ,q q1 2 1

Žceived to perform at least as well as comp i.e.,q2
n U n U .Ý r t GÝ r t . In case that comp isis1 i i,q is1 i i,q q1 2 2

perceived to perform better than comp , we have aq1
n U Ž .perceptual gap g sÝ r t y t )0.q ,q is1 i i,q i,q1 2 2 1

To depict the perceptual gaps among competitors,
we construct a directed network NN whose node set
consists of the Q competitors comp , comp , . . . ,1 2

comp . In NN, two nodes comp and comp areQ q q1 2

connected by an arc, if g )0. Moreover, to eachq ,q1 2

Ž .arc comp , comp of NN we associate the weightq q1 2

Ž .g . The arc comp , comp indicates that theq ,q q q1 2 1 2

competitor comp suffers a perceptual gap overq1

comp . Using the network NN we can identify thoseq2

competitors that enjoy the greatest benefits from
customer perceptions. The marketing strategies of
those competitors can serve as benchmarks for our
marketing strategy towards a newrimproved prod-
uct.

In the case of an existing product, one of the
nodes of NN, say comp , corresponds to our product.1

Then, the competitors comp with the greatest ‘‘dis-q

tance’’ from comp correspond to a reasonable choice1

of competitors to serve as benchmarks for shaping
the firm’s marketing strategy. This is because by
construction of NN, the greater the distance from
comp , the greater the perceptual benefits of com-1

petitors over comp . In Section A.1 we describe the1

properties of NN for two simple distance measures.
More sophisticated measures could be used by the
firm, however, the relevant analysis would be simi-
lar.
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4.1.1. Perceptual gaps for indiÕidual characteristics
The perceptual gap g utilizes the expressionq ,q1 2

n U Ž .Ý r t y t when g )0; see Definitionis1 i i,q i,q q ,q2 1 1 2

1. This expression corresponds to the perception
gains of competitor q over the entire set of cus-2

tomer requirements. Similarly, in Definition 1 the
expression Ýn0 wU

b captures the performanceks1 k q ,k1

of comp over the entire set of engineering charac-q1

Žteristics. Given that every characteristic affects in
.general only a small number of customer require-

ments, it is possible that there exists a perceptual gap
between two competitors for an individual character-
istic, which is nullified when summed up over all the
characteristics. Such finer analysis of perceptual gaps
is facilitated by the following definition.

Definition 2 If a Ga , then the perceptual gapq , j q , j1 2

between comp and comp for the jth engineeringq q1 2

characteristic is

° ¶n
Uj ~ •g smax r t y t ,0 .Ž .Ýq ,q i i ,q i ,q1 2 2 1¢ ßis1

a /0i j

The condition a Ga in Definition 2 indi-q , j q , j1 2

cates that comp performs no worse than compq q1 2

with respect to e . Also, when g j )0 the com-j q ,q1 2

petitor q is perceived to perform better than comp2 q1

since g j ) 0´Ýn rU t ) Ýn rU t .q ,q i i,q i i,qis1 is11 2 2 1

a /0 a /0i j i j

Note that these perceptions are based solely on the
requirements that affect the jth characteristic, i.e.,
a )0.i j

As we did with the network NN, we construct the
j Ž . jnetworks NN where the arc comp ,comp gNNq q1 2

if g j )0. The properties of the networks NN j,q ,q1 2

1F jFm, are the same as those presented in Section
A.1 for NN.

4.1.2. Perceptual gaps for indiÕidual customer re-
quirements

The perceptual gap g uses the expressionq ,q1 2
U Ž .Ý r t y t which involves the entire set ofi i i,q i,q2 1

customer requirements. It is desirable to measure the
actual performance of competitors on each individual
requirement req . This can be done by focusing onlyi

on those e ’s that affect req , i.e., those e ’s forj i j

which a )0. This motivates the following defini-i j

tion.

Definition 3 If Ý n 0 Ým uU b b Gks 1 j jk q , kjs 1 1

a / 0i j

Ýn0 Ým uU b b , then the perceptual gap be-ks1 j jk q ,kjs1 2

a /0i j

tween comp and comp for req isq q i1 2

g Ž i. smax t y t , 0 .� 4q ,q i ,q i ,q1 2 2 1

The condition Ýn0 Ým uU b b G Ýn0
ks1 j jk q ,k ks1js1 1

a /0i j

Ým uU b b in the above definition indicatesj jk q ,kjs1 2

a /0i j

that the weighted actual performance of comp is noq1

worse than that of comp ; note that a G0 andq i j2

hence the terms contributing in each sum are only
those with a )0. However, g Ž i. )0 indicatesi j q ,q1 2

that comp is rated better than comp . Constructingq q2 1

the network NN by including the arci
Ž . Ž i.comp ,comp iff g )0, we can identify per-q q q ,q1 2 1 2

ceptual gaps among competitors for the ith require-
ment req .i

The design team of a newrimproved product can
use the networks NN, NN1, NN 2, . . . , NN m andror
NN , NN , . . . , NN to identify those competitors that1 2 n

score the best in customer perception. Based on these
findings they can formulate marketing strategies for
the newly designed product. In the appendix we
present the properties of the network NN for two
common distance measures. All the results presented
hold true for the networks NN, NN1, NN 2, . . . , NN m

and NN , NN , . . . , NN and the associated gaps g j
1 2 n q ,q1 2

and g Ž i. . In Section 5 we present an example thatq ,q1 2

illustrates the modeling methodology presented in
this article for the design and marketing of newrim-
proved products.

5. An example

In Table 4 we provide the expanded HOQ1 and
HOQ2 charts of an imaginary product with 6 engi-

Ž .neering characteristics ms6 , 5 customer require-
Ž . Ž .ments ns5 , and 5 competitors Qs5 with comp1

corresponding to our existing product. The intensities
w xa in this example utilize the scale 0,9 where 0i j

corresponds to negligible effect of e on req . Thej i
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Table 4
Example problem

Ž . Ž .A Engineering characteristics Preference rankings R Consensus Consensus competitor ratings T
™ranking r )e e e e e e 1 2 3 4 comp comp comp comp comp1 2 3 4 5 6 1 2 3 4 5

Ureq 9 0 0 0 3 1 2 5 5 3 r 7 3 4 1 41 1
Ureq 4 9 2 0 0 4 3 2 2 4 r 2 2 4 2 22 2
Ureq 0 0 5 3 5 0 1 3 2 4 r 5 4 6 4 43 3
Ureq 6 4 0 0 2 3 5 3 2 3 r 2 6 3 3 54 4
Ureq 1 1 7 8 0 4 4 2 4 1 r 4 5 2 5 65 5

U U U U U UAA u u u u u u1 2 3 4 5 6

comp 2 8 15 16 5 301

comp 7 8 9 20 15 122

comp 5 6 12 24 35 243

comp 6 4 15 4 25 304

comp 4 2 6 12 20 365

B HOQ2

p p p p p1 2 3 4 5

Ue 3 4 2 0 7 u1 1
Ue 0 0 7 5 2 u2 2
Ue 0 5 3 2 0 u3 3
Ue 9 0 0 4 5 u4 4
Ue 1 0 4 1 8 u5 5
Ue 0 2 0 6 6 u6 6

U U U U UBB w w w w w1 2 3 4 5

comp 3 4 4 4 31

comp 3 4 3 5 32

comp 4 4 4 4 33

comp 1 4 3 5 54

comp 1 3 4 5 55
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Fig. 2. Parts performance as a function of cost.

number of customers surveyed for their preferences
w xis s s4, and the preference scale is 1,5 . We0

assume that the consensus ratings for the competitors
™Ž .are already computed using model t for qs

1,2, . . . ,5. The consensus ratings are recorded in
w xTable 4 and utilize the scale 1,7 . Moreover, the

actual performance of the competitors for each engi-
Ž .neering characteristic e 1F jF6 is recorded inj

the tester room of HOQ1 in Table 4. This example
will be used to illustrate all models presented so far
in this paper. To simplify calculations, we will use

� 4matrix arithmetic using the matrices As a , AAsi j
� 4 � 4 � 4 � 4 � 4a , Bs b , BBs b , Ts t , and Rs r ,q j jk qk iq i s

also indicated in Table 4. Further, we will use the
budget of Ws18 units, and the performance func-
tions of Fig. 2 for the five parts.

� 4 � 4Using the matrices As a , Rs r and Bsi j i s
� 4b , we havejk

64 73 69 62
51 32 30 49
39 33 42 35T� 4u sA Rs andjs 35 25 38 20
21 36 29 35� 0
45 30 35 32

528 480 578 401
541 517 556 487

T T� 4w sB A Rs 686 613 590 712k s

764 542 625 622� 0
1163 1168 1175 1104

5.1. The consensus rankings

Using the above matrices, the consensus ranking
problem can be solved using the sequence

™UP :ss1,2, . . . ,s , LP , and P rŽ . Ž .Ž .s 0

Ž .of problems presented in Section 3.1. Solving Ps

for each of the 4 customers, we get the cost vectors

� 14 Ž . � 2 4 Ž . � 34c s 1,1,3,6,7 , c s 1,1,5,4,7 , c sk k k
Ž . � 44 Ž .1,1,3,6,7 , and c s 1,1,5,4,7 . Each of these vec-k

tors indicates the optimal parts mix according to the
corresponding customer. We can make the following
observations. The mix that maximizes the expecta-
tions of customers 1 and 3 coincide. Similarly with
customers 2 and 4. There is general agreement with
respect to parts p , p and p . The different cus-1 2 5

tomer expectations from the product, drive the choice
of parts p and p . This scenario is typical for3 4

customers surveyed from a target market. As a re-
sult, our models are expected to identify those criti-
cal parts that drive different customer expectations.

The observation that the optimal part mixes for
various customers often contain several parts in com-
mon, can be used to reduce the size of our optimiza-
tion models by eliminating those common parts from
consideration. In the rest of this example however,
we continue our analysis using all five parts consid-
ered initially.

� Ž s.4The corresponding performance vectors PP ck k
� s4of the part mixes c are recorded as columns of thek

� 4 Ž s.matrix PPs PP where PP sPP c below.k s k s k k

1 1 1 1
3 3 3 3

Ps 3 4 3 4
5 4 5 4� 0
5 5 5 5

Note that the performance attributed by customer s
to hisrher optimal parts mix is computed using the

Ž . Ž .objective function 1 of P . This can be calculated
� 4 � 4as the dot product of w and PP :ks1,2,3,4,5 .k s k s

Hence,

Z1 13844
Z2 12491� 4 � 4Z s w P PP , and ss k s k s Z 130163 � 0� 0 12718Z4
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Ž .Then, the problem LP of Section 3.1 can be written
as

max Z
s.t. r qr qr qr qr s151 2 3 4 5

1 13844
1 12491™rAB PPGZ q
1 13016� 0 � 0
1 12718

1Fr F5 is1,2,3,4,5i

™U UŽ .and yields r s 1,5,1,3,5 and Z s674. Conse-
™UŽ Ž ..quently, according to model P r , the consensus

parts mix that satisfies our budget Ws18 has cost
� U4 Ž .c s 1,1,3,6,7 and the corresponding parts per-k

� Ž U .4 Ž .formance vector is PP c s 1,3,3,5,5 . Hence,k k

the consensus parts mix coincides with the optimal
mix for customers 1 and 3. In general however, the
consensus mix may not be optimal for any of the
customers surveyed. Along these lines, observe that
™Ur does not coincide with any of the preference

Ž .rankings of the customers see Table 4 . The consen-
sus ranking vector induces the consensus weights

U � U 4u s u s 52,62,50,43,14,50 andŽ .j

U � U 4w s w s 557,558,744,896,1115 ,Ž .j

where uU sÝ a rU and wU sÝ uU b . Hence,j i i j i j j j jk

the performance of the consensus parts mix is Ý5
ks1

U Ž U . Ž U .w PP c s14518 note that 14518sZ qZ .k k k 1

This means that, given the budget of Ws18 units it
is possible to develop a product that outperforms all
competitors with respect to the consensus rankings.

As indicated in Section 3.1, an alternative consen-
™Usus vector r can be obtained by solving model

Ž X.P . In the rest of this example however, we will
use the consensus ranking and parts mix obtained
above.

5.2. The ‘‘current practice’’

Ž .We now solve model P for the input data ofC

Table 4 and the available part choices of Fig. 2.
Ž .Recall that the fallacy of P stems from the use ofC

™Ua rankings vector r which is different than the
™Ucustomer consensus rankings r . For simplicity, let

us suppose that the rankings vector used by the
™U Ž .design team is r s 5,2,3,3,2 . Then, the associated
™ � 4 Ž .w-weights are ws w s 480,517,613,542,1168 ,k

Ž .and hence the optimal parts mix according to PC
U Ž .has cost c s 1,1,5,4,7 , and the associated perfor-

� Ž U .4 Ž .mance of the parts is PP c s 1,3,4,4,5 . Notek k

that this parts mix is different that the consensus
parts mix obtained above. In fact, as we saw earlier,
cU is the cost vector of the optimal parts mix for
customers 2 and 4.

� 4Also, note that using the weights w , the perfor-k
™ Tmance of the 5 competitors is calculated to be w BB

Ž .s 11632,11561,12112,12937,13033 as opposed to
™ T Ž .w) BB s 13808,13960,14365,15076,15262 for the
consensus weights wU. Evidently, using the rankingsk
™r, the firm distorts the value attributed to each
competitor for overall product performance. More-

™over, using r it appears that the firm’s product is
Ž .superior to comp because 11632)11561 while2
™Uthe consensus rankings r show that comp ’s prod-1

Ž .uct is inferior to comp ’s because 13808-13960 .2
™Evidently, r directs the firm’s decisions based on

the perception of the design team about the competi-
™Utive environment, while r directs decisions based

strictly on customer preferences.

5.3. Consensus ratings

™™U Ž Ž ..Having obtained r , the linear programs LP tq

yield the consensus ratings vector for each competi-
tor. To do this, we assume that we have surveyed
customers from the target market for their ratings on
each competitor product. For brevity, in our example
we assumed that such survey and the subsequent
analysis have been performed, and that the t ’s in Tiq

™Ž Ž ..are the consensus ratings obtained by model LP t .q

5.4. Perceptual gap networks

The network NN for the example of Table 4 is
depicted in Fig. 3. To construct NN we computed the
values Ýn0 wU

b and Ýn rU t , for 1FqF5.ks1 k qk is1 i i q

The resulting vectors are

™U Tr AB BB s 13808,13960,14365,15076,15262 andŽ .
™Ur Ts 48,60,49,49,63 .Ž .

Ž X.Solid arcs q,q in NN represent perceptual gaps
ŽXbetween comp and comp , suffered by comp seeq q q

.Definition 1 . The number associated with each arc
Ž X. Xq,q in NN in Fig. 3 is the quantity g .q,q
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Fig. 3. The network NN of perceptual gaps.

Using Definition 2, we construct the networks
NN j corresponding to the engineering characteristics

Ž X.e . In Fig. 3, we only include arcs q,q wherej

either qs1 or qX s1. These arcs indicate the per-
Žceptual gainsrlosses of comp recall that we have1

assumed that comp represents the firm’s existing1
. jproduct . More specifically, in the networks NN

corresponding to the e ’s, solid arcs correspond toj
Ž .perceptual losses according to Definition 2 , and

dotted arcs correspond to gains. The labels used in
the NN j’s correspond to the associated g X

j values.q,q

Quite similarly, and using Definition 3, we con-
structed the networks NN corresponding to the cus-i

Ž .tomer requirements req see Fig. 3 . To obtain thei

quantities Ýn0 Ým uU b b we used the pro-ks1 j jk qkjs1

a /0i j

duct B BBT of matrices.
Assuming that comp is the firm’s existing prod-1

uct, we make the following observations for the
perceptions of customers in comparison to other
competitors. The firm’s product has the worst actual

performance when weighted with the wU weightsk
U Žthat incorporate the consensus rankings r this mayi

indicate that the design efforts for the existing prod-
uct focused on entering the market without proper

.consideration of customer expectations . As a result,
no unfavorable perceptual gap is possible. Also, no
favorable gap is present, since no arc in NN points to
comp . NN also indicates that even though comp ’s1 2

product is among the worse performers, comp and3

comp are perceived as worse by customers; this4

suggests a closer analysis of the marketing strategies
of these competitors. For such closer analysis, let us
first look at the networks corresponding to engineer-
ing characteristics. With respect to e , no competitor1

enjoys unfair advantages over comp because there1

is no arc emanating from comp . In contrast, all 41

competitors of comp are unfairly perceived better1

with respect to e and e . Similarly, competitors 3, 42 3

and 5 are wrongly perceived better than comp on1

e , and competitors 2 and 4 on e . These observa-4 6

tions mean that the firm’s marketing strategy has not
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been successful in promoting the product’s engineer-
ing characteristics. A first step in improving the
current situation may be to analyze comp ’s market-4

ing strategy, because comp has proved successful in4

convincing customers that comp is better than comp4 1

in 5 of the 6 engineering characteristics of the prod-
uct.

Similarly, for the networks associated with the
Ž X.req ’s we only depict in Fig. 3 arcs q,q wherei

qs1 or qX s1. According to Definition 3, the per-
formance of comp with respect to req is givenq i

by the element in the ith row and qth column
� 4of the matrix M s M where M si q i q

Ýn0 Ým uU b b ,ks1 j jk qkjs1

a /0i j

5966 6120 6136 7332 7184
10656 10678 10812 11942 12072

Ms .5152 5232 5553 5084 5040
9314 9344 9484 10804 11090� 0
13150 13344 13693 14264 14394

As seen, the performance of comp is the worst1

among competitors for the customer requirements
req , req , req and req . Hence, it is impossible for1 2 4 5

comp to suffer perceptual losses for these require-1

ments. The dotted arcs in the networks N indicatei

the unfair perceptual advantages enjoyed by comp .1

Most notably, comp is wrongly perceived as being1

the most satisfactory with respect to req . To identify1

competitors with successful marketing strategies, one
can draw the networks where q,qX

/1.
In summary, the imaginary product and data given

in Table 4 does not capture customer requirements
satisfactorily, and as a result it is perceived as having
the worst overall performance. Moreover, customers
unfairly perceive the firm’s product as inferior, even
for the characteristics e , e , e , e and e where2 3 4 5 6

the product’s actual performance is among the top
contenders. The only notable success of the firm’s
marketing strategy appears to be with req . In con-1

Žclusion, the firm needs to upgrade their product as
.seen this is possible for the allowable budget , and

promote its engineering superiority. Possible ways
for improving the current marketing strategy is by
analyzing the strategy followed by comp who is2

unfairly perceived better than comp and comp .3 4

As shown by this example, the perceptual net-
works can be used as ‘‘control charts’’ to evaluate
the competitive environment, and guide, focus, and
benchmark the firm’s marketing strategy.

6. Conclusion and future research directions

Quality function deployment offers a blueprint for
newrimproved product design. In this article we
presented optimization modeling techniques for some
of the decisions involved with the first 2 stages of
QFD that have been traditionally made based on
expert opinion. This effort helps to more fully and
objectively consider the voice of the customers, engi-
neers, marketeers, and accountants in the design
phase. We presented an approach for parts deploy-
ment that accounts for affordability. Finally, we
exploited information available in the QFD charts to
provide marketing insights and identify winning
marketing strategies of competitors.

In our experience the development of optimiza-
tion models for an objective use and interpretation of
the data collected during the QFD process is a very
useful and needed exercise. In our future research we
intend to consider modeling approaches for the stages
3 and 4 of QFD, as well as the development of a link

Ž .between parts deployment considered in this article
and the latter two stages. As mentioned in Section 2,
our models assume that the unit cost W is known
exactly. Clearly, the available budget can greatly
affect product performance and hence the design
itself. Also, the elasticity of demand to the selling
price for the product has ramifications on the accept-
able unit cost level and hence the design. Therefore,
extending our methodology to incorporate the impact
of pricing and demand elasticity on product design is

Ž X.a worthwhile task. Finally, except for problem P
the formulations presented in this article are rela-
tively simple as the goal is to demonstrate the feasi-
bility of using optimization to resolve consensus
issues more objectively. Research towards identify-
ing alternative model formulations and the corre-
sponding solution procedures will allow the mem-
bers of product design teams to choose the most
appropriate objective for their application.
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Appendix A

In Section A.1, this appendix includes properties
of the network NN of perceptual gaps constructed in
Section 3.1. These properties result from Definition

Ž .1. Using NN, we identify the competitor s that enjoy
the greatest benefits over comp in customer percep-1

tions. To do this, we utilize 2 simple measures for
the ‘‘distance’’ among competitors. More appropri-
ate measures are possible depending on the applica-
tion, however, relevant analysis should be similar. In
Section A.2 we discuss solution procedures for the

Ž . Ž X.models P and P of Sections 2 and 3, respec-
tively.

A.1. Properties of perceptual gap networks

In what follows we examine two measures that
can be used for the distance between an arbitrary

Ž .pair comp , comp of competitors. Namely,q q1 2

Ž .Ø l comp , comp : the longest length of any di-q q1 2

rected path from comp to comp , andq q1 2

Ž .Ø wl comp ,comp : the longest weighted directedq q1 2

path from comp to comp , where the weightq q1 2

Ž .Xassociated with an arc comp , comp gNN isq q

g X .q,q

The following proposition states that the network
NN does not contain directed cycles. This observation
is important, since otherwise one could reach erro-
neous conclusions stemming from the resulting asso-

Žciativity of perceptual gaps e.g., competitor x is
perceived better than y, y better than z, and z better

.than x .

Proposition 1 The network NN of perceptual gaps is
acyclic.

Proof: By contradiction. Without loss of generality,
let us assume that comp , comp , . . . , comp is a1 2 q

directed cycle in NN. By construction of NN, we have
n n n0 0 0

U U Uw b G w b G . . . G w b ,Ý Ý Ýk 1k k 2 k k qk
ks1 ks1 ks1

and
n n n

U U Ur t - r t - . . . - r t ,Ý Ý Ýi i1 i i2 i i q
is1 is1 is1

which imply that
n n n n0 0

U U U Uw b G w b , and r t - r t .Ý Ý Ý Ýk 1k k qk i i1 i i q
ks1 ks1 is1 is1

The latter inequalities indicate that there is an arc
Ž .comp , comp in NN; contradiction to the assump-1 q

tion that comp , comp , . . . , comp form a directed1 2 q

cycle. This completes the proof of the proposition.I

In case of a new product, comparative perceptual
performance among competitors can be used to de-
cide which competitors should serve as benchmarks.
In case of an existing product, one of the nodes of
NN, say comp , corresponds to our product. Then, the1

competitors comp with the greatest ‘‘distance’’ fromq

comp correspond to a reasonable choice of competi-1

tors to serve as benchmarks for shaping the firm’s
marketing strategy. This is because by construction
of NN, the greater the distance from comp , the1

greater the perceptual benefits of competitors over
comp . Note that we could use any graph theoretic1

Ž .distance measure d P,P in place of the two mea-
sures described above. For the particular distance
measures described above however, the following
proposition shows that for any competitor comp ,q

maximizing the distance from comp is equivalent toq

maximizing the perceptual gap over comp . Letq
Ž X. XP q,q denote a directed path from comp to comp .q q

Ž . Ž X.Then, if comp ,comp is an arc in P q,q , itq q1 2

Ž .holds by definition that l comp ,comp s1, andq q1 2

Ž .wl comp , comp sg . The distance measureq q q ,q1 2 1 2

Ž . Ž .l P,P is a special case of wl P,P where g s1q ,q1 2

Ž .for every comp , comp g NN such thatq q1 2

� n U Ž . 4max Ý r t y t ,0 )0. For this reason, weis1 i i,q i,q2 1

Ž .present the next proposition for the measure wl P,P
only.

Ž . ŽProposition 2 If wl comp , comp )wl comp ,q q q0 1 0

.comp thenq2

g XÝ q ,q
XŽ . Ž .comp , comp gP q ,qq q 0 1

) g X .Ý q ,q
XŽ . Ž .comp , comp gP q ,qq q 0 2
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Proof: The proof follows trivially from the definition
Ž .of wl P,P . I

Ž .In what follows we use the notation d P,P to
Ž . Ž .denote either l P,P or wl P,P . In light of Proposi-

tion 2, and assuming that the node comp corre-1

sponds to our product, we are interested in solving
the model:

Ž . Ž .D max d comp , comp1F q F Q 1 q 12Ž .
Ž .s.t. P 1,q is a directed path in NN .

Ž .To solve D we need to gain more insight on the
structure of NN. Recall from the proof of Proposition

Ž X.1, that for every directed path P q,q on more than
Ž .Xtwo nodes, the arc comp , comp belongs to NN.q q

Ž .Then, if P 1,q scomp , comp , . . . , comp is a1 2 q

longest path starting from comp , the directed sub-1
�graph G of NN with node set Bs comp , comp ,B 1 2

4. . . , comp must have an orientation of arcs like theq

one in Fig. 4 where the indegree of comp is inde-k
Ž .gree comp sk-1 for 1FkFq. Also, note that Gk B

is a complete subgraph of NN; such subgraph is
referred to as a clique of NN. The following result
from graph theory holds true for directed complete

Žgraphs i.e., graphs every two nodes of which are
.connected by a directed arc .

Theorem 1 Redei, 1934 EÕery directed complete
graph on q nodes contains a directed path of length
qy1.

According to the preceding discussion, indeg-
Ž . Žree comp s0 which means that comp i.e., a1 q

.competitor with maximum distance from comp1

must be the starting node of the directed path im-
plied by Theorem 1. Hence, we have the following
corollary.

Fig. 4. The clique induced by a longest path.

Ž . Ž .Corollary 1 max l comp , comp sk NNcomp g NN 1 qq

Ž .y1, where k NN is the number of nodes of a
maximum clique of NN that includes comp .1

In most applications, the number Q of competi-
tors is expected to be small and hence the corre-
sponding network NN is expected to be manageable.
In these cases, Corollary 1 along with Fig. 4 can be
used to visually identify a longest path from comp .1

ŽElse, Dijkstra’s algorithm can be used see Dijkstra,
.1959, or Papadimitriou and Steiglitz, 1982, p. 128

Ž 2 .to identify a longest path from comp , in OO Q1

time.
The above observations characterize the longest

paths of NN that start from comp . These longest1
Ž .paths use the distance function l P,P . The character-

ization of longest weighted paths utilize the distance
Ž .function wl P,P , and is much simpler.

Proposition 3 Let comp , comp , . . . , comp be a1 2 q

directed path of maximum weighted length. Then,

wl comp , comp sg .Ž .1 q 1,q

Proof: By definition of NN and the fact that comp ,1

comp , . . . , comp forms a directed path, we have2 q

n n n0 0 0
U U Uw b G w b G . . . G w bÝ Ý Ýk 1k k 2 k k qk

ks1 ks1 ks1

and

wl comp , comp sg qg q . . . qgŽ .1 q 1,2 2,3 qy1,q

n
Us r t y tŽ .Ý i i2 i1

is1

n
Uq r t y t q . . .Ž .Ý i i3 i2

is1

n
Uq r t y tŽ .Ý i i q i ,qy1

is1

n
Us r t y t )0.Ž .Ý i i q i1

is1

Hence, Ýn0 wU
b GÝn0 wU

b and g sÝn
ks1 k 1k ks1 k qk 1,q is1

U Ž . Žr t y t )0 which means that the arc comp ,i i q i1 1
.comp is included in the arc set of NN and hasq

weight g . This completes the proof of the proposi-1, q

tion.
I
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According to Proposition 3, there exists a longest
weighted path that consists of a single arc. To iden-
tify such an arc it is enough to check all arcs
emanating from comp . This takes no more than1
Ž .OO ^ time, where D denotes the maximum degree

of the nodes of NN. Finding this arc, identifies a
Žcompetitor with largest distance according to mea-

Ž ..sure wl P,P from comp .1

A.2. Solution methods for optimization models

In this subsection, we discuss solution procedures
Ž . Ž X. Ž .for models P and P . Model P has the sameC

Ž .form as P ; the two models differ only in the
coefficients of the objective function. All other mod-
els used in the body of the paper are linear programs.

Ž .Model P can be solved optimally using the
Ž .following simple dynamic program DP .

Ž .f w s the maximum objective function valuek

for the parts p , p , . . . , p , and a budget of w1 2 k

units.
Ž . � ŽRecurrence relation: f w smax f wk 1F l F n ky1k

. Ž .4yc qw PP c , ks1,2, . . . ,n .k l k k k l 0
Ž .Boundary conditions: f w s0 if 0FwFW;0

y` otherwise.
Ž .Solution: f )smax f w .0 F w F W n0

Further, to identify the smallest budget w that
Ž .maximizes the objective function of P , we search

for min w. The state space of DP is of orderf Žw .s f )n0Ž .OO n W and hence the computational complexity is0
Ž 2 .OO n W .0

Ž .This completes our presentation for P .
Ž X . Ž .Problem P is significantly harder than P

because it considers the parts mix and rankings
subproblems simultaneously. In particular, for a given

Ž . Ž X.parts mix i.e., a given assignment , P is equiva-
Ž . Ž X.lent to model LP . For given rankings, P reduces

Ž .to P and hence the previous DP algorithm applies.
These facts indicate that an efficient branch and

Ž X. Ž .bound algorithm is possible for P , that uses P
Ž .and LP as subroutines. Developing such an algo-

Ž X.rithm for P is beyond the scope of this article

which focuses more on a modeling framework for
QFD rather than algorithmic development. Develop-

Ž X .ing a dynamic programming algorithm for P is
possible, however the usefulness of such algorithm
would be limited due to its high computational com-
plexity.
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